

Innovation Takes Off

www.cleansky.eu

Clean Sky 2 Information Day dedicated to the 4th Call for Proposal (CfP04)

ENGINE ITD

François Mirville : SAFRAN/Snecma Kevin Phuah : Rolls-Royce Peter Taferner : MTU Aero Engines

Brussels, 22 June 2016

Innovation Takes Off

www.cleansky.eu

From Clean Sky towards Clean Sky 2

- Clean Sky, through SAGE (Sustainable And Green Engines), is delivering significant step changes in key engine technologies along the following themes:
 - Open Rotor, Composites, Lean Burn combustors, high power gearboxes, enhanced turbines and compressors, advanced materials and improved structures
- Clean Sky 2 is about providing and demonstrating new engine technology for the whole of the civil market
- The Clean Sky 2 engines ITD will build on Clean Sky and demonstrate technology at a whole engine level

High-Level Objectives

- Environmental objectives for the engines ITD are to demonstrate at TRL6 the following:
 - -20-30% reduction in CO₂*
 - Significant contribution to ACARE 2020 NO_x reduction target (-80%*)
 - Upto -11EPNdB per operation reduction in noise* *relative to year 2000 baseline
- Industrial objectives are to ensure future competitiveness of European Aero Engine industry, securing trade, employment and high technology knowledge and skills

ENGINE

SPD Work Breakdown Structure

WP0: ITD Coordination (RRUK / Safran Aircraft Engines/ MTU)

WP2: UHPE Demonstrator for SMR aircraft (Safran Aircraft Engines)

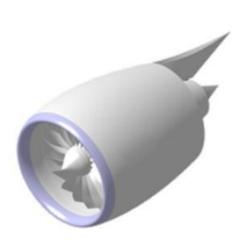
WP3: Business Aviation/SR Regional TP Demonstrator (Safran Helicopter Engines)

WP4: Advanced Geared Engine Configuration (MTU)

WP5: VHBR Middle of Market Turbofan Technology (RRUK)

WP6: VHBR Large Turbofan Demonstrator (RRUK)

WP7: Light weight and efficient jet-fuel reciprocating engine (Safran SMA)


WP8: Reliable and more efficient operation of small turbine engines (PAI)

WP9: ECO Design Activities - Optional (RRUK / SN / MTU)

CfP#4 – Topics from Safran Aircraft Engines and its Core Partners

WP2 Safran Aircraft Engines *Clean Sky 2* activities: <u>Ultra High Propulsive Efficiency for SMR aircraft</u>

UHBR turbofan for SMR aircraft

Main Technology Objectives

from design to ground test of an engine demo to validate LP modules & nacelle technologies

Key Technologies

- Low pressure ratio fan / variable area fan nozzle
- Low weight / low drag fixed or rotating structures and nacelle.
- High power gear box
- High efficiency LP turbine & LP compressor
- Engine / aircraft specific integration

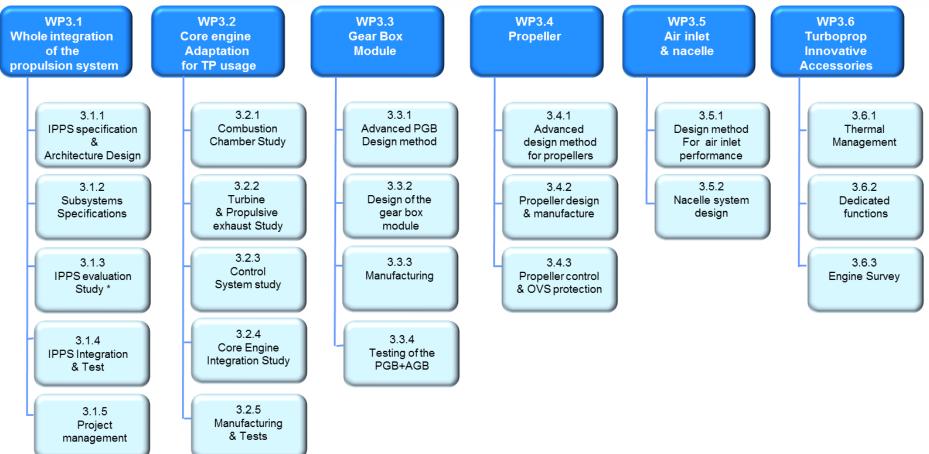
Potential Partner participation:

•Fixed structures in propulsive system, low pressure turbine components, controls and systems components, shafts, bearings

Safran Aircraft Engines proprietary data

CfP#4 – Topics from Safran Helicopter Engines and its Core Partners

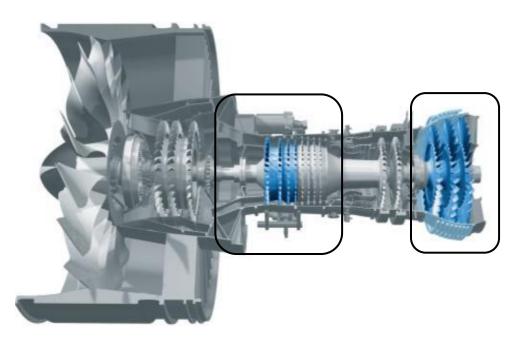
- Main Technology Objectives
 - From design to ground test of a new turboprop engine demo for business aviation and short range regional.
 - Improvement of advanced core engine ARDIDEN3



From ARDIDEN 3 existing turboshaft engine to full Integrated Turboprop System

- Key Technologies
 - HP core small size
 - Advanced propeller / air inlet / gear box
 - Controls, lub & actuation systems

WP3 – Work Breakdown Structure



- * WP3.1.3 : Interface with TE & ECO DESIGN
- WP3.3 & WP3.4 open to core partner
- WP3.6 open to partners

Overview of the ITD/IADP

WP4 MTU *Clean Sky 2* activities: Advanced Geared Engine Configurations

Main Technology Objectives

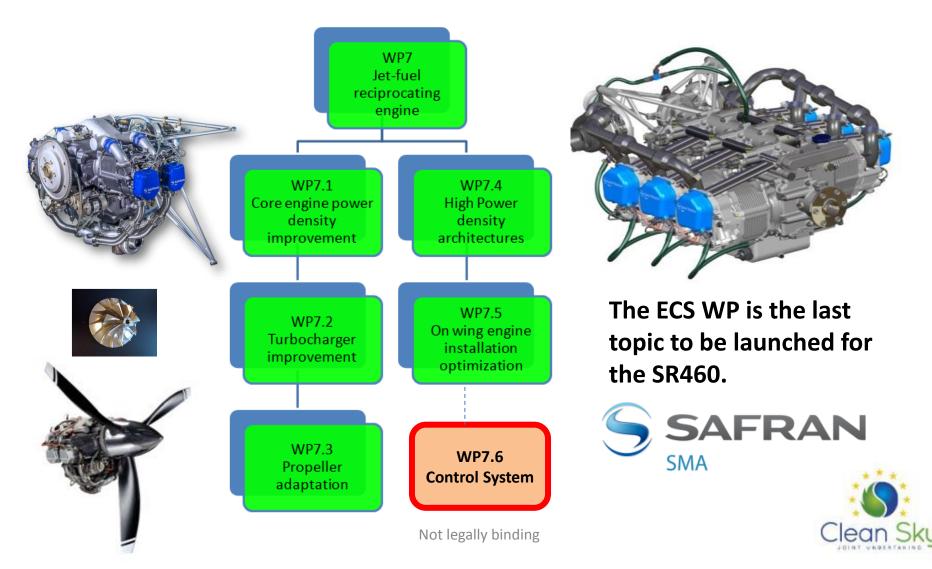
 Rig and Engine Testing and Validation of Compressor and Turbine Technology to further reduce Emissions

Key Technologies

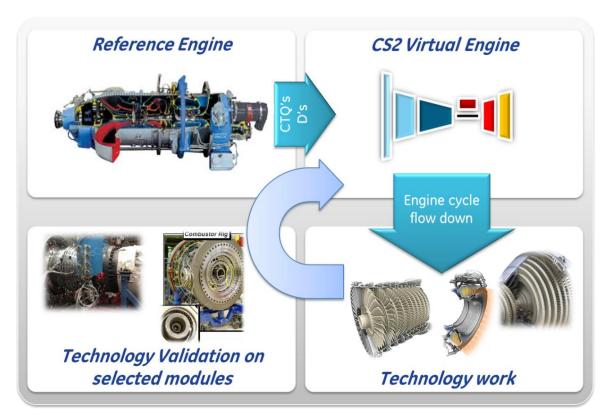
- Aerodynamic Integration
- Material Technologies
- Manufacturing Technologies

Timeframe: 2015 - 2021

Overview of the ITD/IADP


Rolls-Royce *Clean Sky 2* activities are split into two work packages:

<u>WP5:</u> underlying technologies for VHBR engines with focus on the "Middle-of-Market" short range aircraft WP6: VHBR technologies for the long range airliner market with Engine Demonstrator


WP7 CfP#04: Engine Control System

WP7 Light weight & Efficient Jet-fuel reciprocating engine

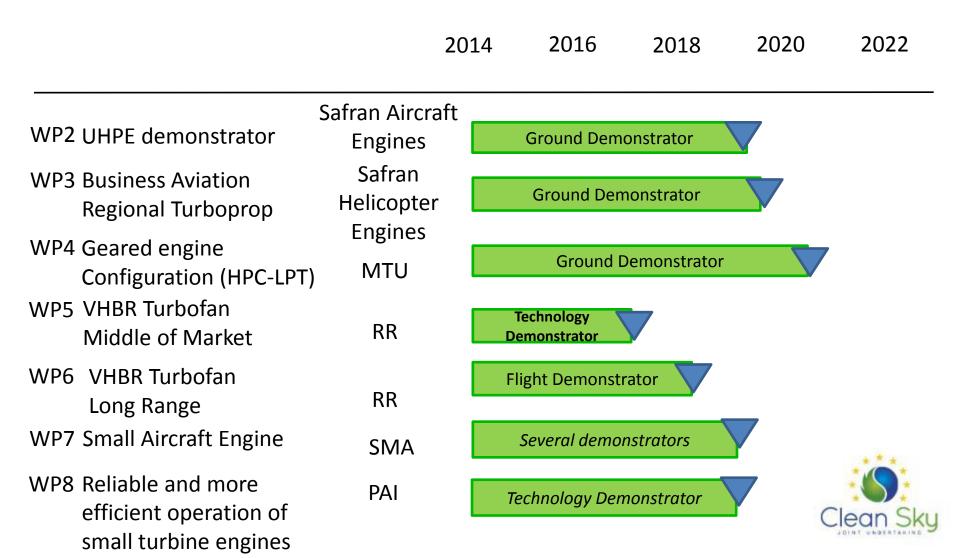
Overview of the ITD/IADP

WP8 – Piaggio Aero/ Avio Aero Clean Sky 2 activities Reliable and more efficient small Gas Turbine engine for SAT market

Main Technology Objectives

- Virtual Engine Integration
- Component Maturation
- Component Validation

Key Technologies


- Material Technologies
- Manufacturing Technologies
- Compressor
- Combustor
- Turbine

Timeframe: 2015 - 2019

Overview of the ITD/IADP

Engine ITD timelines

Overview of SPD topics

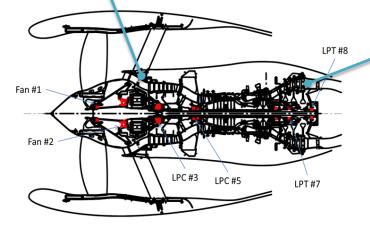
Identification Code	Title		Value (Funding in M€)	Topic Leader
				Safran
	High speed turbine performance improvement			Aircraft
JTI-CS2-2016-CFP04-ENG-01-10	through cascade tests	RIA	1,500	Engines
	2 VBV actuators (LHS & RHS) for Ground Test Demo 2 VSV booster actuators (LHS & RHS) for Ground			Safran Aircraft
JTI-CS2-2016-CFP04-ENG-01-11	Test Demo	IA	1 800	Engines
	Development of the investment casting process and weldability for high temperature capable		1,000	
JTI-CS2-2016-CFP04-ENG-01-12	superalloys	IA	0,700	GKN
JTI-CS2-2016-CFP04-ENG-01-13	High load gear and bearings materials	IA	0,450	AA
JTI-CS2-2016-CFP04-ENG-01-14	Experimental & Numerical analysis dedicated to FOD Management for Turboprop Air intake	RIA		Safran Helicopter Engines
	Substitution of Chromium(VI)-based substances for corrosion protection of Aluminum-and			-
JTI-CS2-2016-CFP04-ENG-02-05	Magnesium alloys	RIA	1,000	MTU
	Small-Scale Spin Test for Hoop-Burst			
JTI-CS2-2016-CFP04-ENG-03-13	Overspeed Assessment	RIA	0,663	RR
JTI-CS2-2016-CFP04-ENG-03-14	Fuel injector coking	IA	1,000	RR
JTI-CS2-2016-CFP04-ENG-04-06	Engine Control System	IA	0,500	Safran SMA
JTI-CS2-2016-CFP04-ENG		-	8,563	

CS2- CPW02- ITD ENGINE TOPICS

- 9 topics :
 - WP2 (Safran Aircraft Engines & its Core Partners) :
 4 topics
 - WP3 (Safran Helicopter Engines) : 1 topics
 - WP4 (MTU) : 1 topic
 - WP5 & 6 (Rolls Royce and its Core Partners) : 2 topics
 - WP7 (Safran SMA) : 1 topic

CfP#4 – Topics from SAFRAN Snecma and its Core Partners

2 VBV actuators (LHS & RHS) for Ground Test Demo


2 VSV booster actuators (LHS & RHS) for Ground Test Demo

Funding: 1,8M€

Objectives: Supply two variable bleed valve actuators and two variable stator vanes actuators for UHPE Ground Test Demo including current definition products and specific products that will be necessary due to the characteristics of UHPE Ground Test Demo. Innovative design is required in order to meet demo specification and to provide significant weight savings and room benefit versus existing standards

High speed turbine performance improvement through cascade tests

Funding:	1,5M€
Objectives:	Cascade tests for subsonic and transonic airfoil profiles consistent with high-speed LP turbine design. The aim of the tests is to validate and improve performance of turbine blades by testing various configurations. 'State of the art' instrumentations & facilities are required to capture unsteady phenomena that were not taken into account in the past

CfP#4 – Topics from SAFRAN Snecma and its Core Partners – Cont'd

Development of the investment casting process and weldability for high temperature capable superalloys

Funding:	700k€
Objectives:	Develop the investment casting process and weldability for high temperature superalloys for example by tailoring the casting solidification structure, adapting the thermal processing or by minor alloy chemistry adjustments, in order to improve weldability of a number of commercially available alloys

Fan #1

High load gear and bearings materials

Funding:	450k€
Objectives:	 Down-selection of candidate materials and surface treatments for high power density gearboxes. Procurement of bearing and gear test articles. Perform testing activities on bearings also in contaminated conditions, and on gears through high load and high temperature testing, reproducing conditions similar to the ones of next generation very high bypass engines.

Experimental & Numerical analysis dedicated to FOD Management for Turboprop Air intake

Identification	Title	
JTI-CS2_2015-CFP03-	-CFP03- Experimental & Numerical analysis dedicated to FOD Management for	
ENG-TM-4	Turboprop Air intake	
Short description		
The purpose of the study is to verify the efficiency of the Inlet Particle Separator (IPS) of the		
Turboprop air intake. Numerical & experimental investigations will be conducted to assess the air		
intake and IPS geometry for FOD management (water, sand).		

Type of action (RIA or IA)	RIA		
Programme Area	ENG		
Joint Technical Programme (JTP) Ref.	JTP version 4, Chapter 10		
Indicative Funding Topic Value (in k€)	950 k€		
Duration of the action (in Months)	48 months	Start	Q4/2017
		Date	

CfP #4 – Topics from Rolls-Royce and its Core Partners

Nickel disc over-speed capability testing

Funding:	€650K
Objectives:	The aim of the project is to develop capability and understanding of the overspeed performance of a new nickel disc alloy, RR1073. This would consist of 3 main work- streams: 1.Design of a small spin test for hoop burst overspeed testing, 2.Manufacture and test of 6 small spin tests and 3.Analysis of rig tests and development of the overspeed correlation.

	Fuel Injecto	r
	Funding:	
	Objectives:	
Rolls-Royce Ultrafan [™] Demonstrator		

Efficiency relative to Trent 700	25%+
Bypass Ratio	15+

Coking

Funding:	€900K
Objectives:	The programme aims to characterise the fuel injector coking phenomenon in a representative environment experimentally and numerically. Both stagnant and flowing fuel flow conditions will be investigated. The research is meant to de- risk the lean burn programme, but results will be

exploited by rich burn as well.

MTU CfP#4 – Substitution Cr 6

Substitution of Chromium(VI)-based substances for corrosion protection of Aluminum- and Magnesium alloys

Substances based on Chromium(VI) are used for passivation / chromating of aluminium and magnesium alloys as a corrosion protection of the surface.

These substances (chromium trioxide and dichromates) are subject to the REACH regulation and use will be forbidden from September 2017 on.

The goal is to develop suitable substitutes.

CED04 info Dava

CFP04 info Days

MTU CfP#4 – Substitution Cr 6

RIA

ENG

Substitution of Chromium(VI)-based substances for corrosion protection of Aluminum- and Magnesium alloys

Type of action:

Programme Aerea:

JTP Ref.:

Ref. No.:

Indicative Funding Topic Value:

Duration:

Start Date:

JTI-CS2-2016-CFP04-ENG-02-05

WP4 Geared Engine Configuration

900 k€

18 month

Q2 - 2017

CfP #4 – Topics from Safran SMA

Type of action (RIA or IA)	IA		
	ENG – WP7.6 [Ligi	nt weight and efficient	Jet-fuel
Programme Area	reciprocating engine]		
Joint Technical Programme (JTP) Ref.	JTP V5		
Indicative Funding Topic Value (in k€)	500 k€	Type of agreement	Implementation
			Agreement
Duration of the action (in Months)	18 months	Indicative Start	Q2 2017
		Date ⁵³	

Identification	Title	
JTI-CS2-2016-CFP04- EN G-04-06	Engine Control System	
Short description (3 lines)		
Design and manufacture an engine control system prototype to mainly drive a mechanical injection system.		

Any questions on the Call and topics can be addressed to the following mailbox: Info-Call-CFP-2016-01@Cleansky.eu

Deadline to submit your questions: 15th April 2016, 17:00 (local time)

Thank You

AIRBUS HELICOPTERS

THALES

Disclaimer

The content of this presentation is not legally binding. Any updated version will be regularly advertised on the website of the Clean Sky 2 JU.